
59-553 61 The Reciprocal Lattice 
Because of the reciprocal nature of d spacings and θ from Bragg’s Law, the 
pattern of the diffraction we observe can be related to the crystal lattice by a 
mathematical construct called the reciprocal lattice.  In other words, the 
pattern of X-ray reflections makes a lattice that we can use to gain 
information about the crystal lattice. 

The reciprocal lattice is constructed as follows: 
 
1. Choose a point to be the origin in the crystal 
lattice. 
 
2. Let the vector normal to a set of lattice 
planes in the real lattice (i.e. [hkl]) radiate from 
that origin point such that the distance of the 
vector is the reciprocal of the d spacing for 
each family of planes.  i.e. the vector for the 
family of planes (hkl) has an orientation of [hkl] 
and a distance of 1/d(hkl) (or, more generally 
K/d(hkl)). 
 
3. Repeat step 2 for all real lattice planes. 

You can see how this works at: http://www.doitpoms.ac.uk/tlplib/reciprocal_lattice/index.php 
or: http://www.xtal.iqfr.csic.es/Cristalografia/index-en.html 



59-553 62 The Reciprocal Lattice 
This procedure constructs a reciprocal lattice (RL) in which each lattice point 
corresponds to the reflection that is generated by a particular family of 
planes.  This lattice can easily be indexed by assigning the proper (hkl) value 
to each lattice point. 

Note that consequence of this reciprocal relationship include: 
 
-Large d spacings correspond to small spacings in the RL – this is an 
important feature that must be considered during data collection. 
 
- Obtuse angles in the real lattice correspond to obtuse angles in the RL 



59-553 63 The Reciprocal Lattice 
For those of you who are comfortable with vectors, here is how the reciprocal lattice is built: 
Note that : a · a* = 1 (etc. – this is the reciprocal part) 
  a · b* = 0 (etc. – the vectors are orthogonal in this geometry) 

Thus the reciprocal lattice can be represented by vectors of the form: 
 
Rhkl = ha* + kb* + lc*, 
| Rhkl | = K / dhkl 
 
where h, k, and l are the indices of sets of planes in the crystal, and K can assume the value of 
1, λ, or 2πλ, depending on the user's convention (crystallography, solid-state physics, etc). In 
later discussions, K will be assumed to have a value of 1. K is shown in the relations below for 
completeness. 
 
Thus the individual lattice vectors have the following definitions: 
a* = K (b × c) / (a · (b × c))    a = (b* × c*) / K (a* · (b* × c*))  
b* = K (c × a) / (b · (c × a))    b = (c* × a*) / K (b* · (c* × a*))  
c* = K (a × b) / (c · (a × b))   c = (a* × b*) / K (c* · (a* × b*)) 
 
cosα* = (cosβ cosγ - cosα) /( sinβ sinγ)  cosα = (cosβ* cosγ* - cosα*) /( sinβ* sinγ*) 
cosβ* = (cosα cosγ - cosβ) /( sinα sinγ)  cosβ = (cosα* cosγ* - cosβ*) /( sinα* sinγ*) 
cosγ* = (cosα cosβ - cosγ) /( sinα sinβ)  cosγ = (cosα* cosβ* - cosγ*) /( sinα* sinβ*) 
 
V = a · b × c = 1/V* = abc √ (1 - cos2α - cos2β - cos2γ + 2 cosα cosβ cosγ) 
V* = a* · b* × c* = 1/V = a*b*c* √ (1 - cos2α* - cos2β* - cos2γ* + 2 cosα* cosβ* cosγ*) 
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Some of the important relationships between the real lattice and the 
reciprocal lattice (in non-vector notation) are summarized here.  Note that K 
= 1 in these equations. 



59-553 65 Systematic Absences 
The presence of translational symmetry elements and centering in the real 
lattice causes some series of reflections to be absent – we will deal with this 
in more detail when we look at structure factors. 

The presence of systematic absences can 
be understood in a simple way from 
Bragg’s Law.  If a set of lattice planes 
occupy a position such that they reflect X-
rays completely out-of-phase with another 
set of lattice planes, then no reflection will 
be observed.  I.e. although the Bragg 
condition is satisfied for the sets of planes 
in question, the destructive interference 
“extinguishes” the reflection.  This situation 
only arises if there are translational 
symmetry elements or centering in the 
crystal lattice. 

e.g. the (001) reflection in a cubic I lattice (BCC) is absent. 
Consider the additional path lengths vs. beam “1”: 
For “2” it is 2d sin(θ); for “3” it is 2(d/2) sin(θ), thus the rays from “3” 
will be exactly out-of-phase with those of “2” and no reflection will be 
observed. 



59-553 66 Systematic Absences 
These systematic absences (or “systematic extinctions”) thus indicate the 
presence of centering and/or specific symmetry elements in the lattice and 
provide us with information about the space group of the crystal.  Note that in 
the International Tables, the “limiting conditions” for reflections are reported – 
this is the opposite of a systematic absence – so be careful in interpreting 
the information.  Note that the conditions for reflections or absences are 
reported as simple equations in which “n” indicates any integer. 
 
E.g. if for reflections of the type (h00), h = 2n + 1 are absent (this means that if h is 
odd, then the reflection will not be observed) 
Conversely, this means that the limiting condition for such reflections to be observed 
is: for (h00), h = 2n (i.e. reflections are only observed when h is even) 

E.g. for C centered cells, such as the one pictured above, (hkl) reflections are 
systematically absent when: h + k = 2n + 1 (if the sum of h and k is odd) 



59-553 67 Systematic Absences 
Because certain symmetry elements cause absences that supersede those 
caused by other elements, it is necessary to search for the presence of 
symmetry elements in the following order: first search for unit cell centering, 
then for glide planes, then for screw axes. 
 
The reason for this becomes apparent upon examination of the conditions 
listed below – note there are some more conditions that are found in the 
hand-out for today. 

Symmetry Element  reflection absence conditions 
 
A centered Lattice (A)  hkl  k+l = 2n+1 
B centered Lattice (B)    h+l = 2n+1 
C centered Lattice (C)    h+k = 2n+1 
 
face-centered Lattice (F)  hkl  h+k = 2n+1 
      h+l = 2n+1 
      k+l = 2n+1 
 
Body centered Lattice (I)  hkl  h+k+l = 2n+1 
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Symmetry Element  reflection absence conditions 
 
Glide Perpendicular to a 
translation  b/2  (b) 0kl   k = 2n+1 
   c/2  (c)    l = 2n+1 
  b/2+c/2   (n)    k+l = 2n+1 
  b/4+c/4   (d)    k+l = 4n+1 
 
Glide Perpendicular to b 
translation  a/2  (a) h0l   h = 2n+1 
   c/2  (c)    l = 2n+1 
  a/2+c/2   (n)    h+l = 2n+1 
  a/4+c/4   (d)    h+l = 4n+1 
 
Glide Perpendicular to c 
translation  a/2  (a) hk0   h = 2n+1 
   b/2  (c)    k = 2n+1 
  a/2+b/2   (n)    h+k = 2n+1 
  a/4+b/4   (d)    h+k = 4n+1 
 
21-fold screw  a h00   h = 2n+1 
42-fold screw  along b 0k0   k = 2n+1 
63-fold screw  c 00l   l = 2n+1 
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Overall, the combination of the symmetry of the reciprocal lattice and the 
presence or absence of certain types of reflections is used to determine the 
space group of the crystal lattice.  In practice, the identification of systematic 
absences is done by the collection software on the diffractometer and you 
will rarely have to look at the results yourself. Note that in many cases the 
systematic absences are not enough to differentiate between alternative 
space groups (e.g. Cc and C2/c) so one must solve the structures and 
assess the final results using statistical methods. We will look at this and 
also examine systematic absences in the context of structure factors later in 
the course. 

Remember that 
reciprocal lattices are 
3-dimensional and you 
might have to look in 
different layers to find 
the absences. 



59-553 70 The Ewald Sphere 
We have constructed the reciprocal lattice (RL) in terms of the reciprocal d-
spacings, 1/dhkl, another utility of this lattice in terms of crystallography is 
made apparent by the Ewald sphere, which tells us the angle at which each 
family of planes will diffract! 
 
Consider a circle of radius r, with points X and Y lying on the circumference. 

If the angle XAY is defined as θ, then the angle XOY will be 2θ by geometry and 
sin(θ) = XY/2r 
If this geometry is constructed in reciprocal space, then it has some important 
implications. 
The radius can be set to 1/λ, where λ is the wavelength of the X-ray beam. 
If Y is the 000 reciprocal lattice point, and X is a general point hkl, then the distance XY 
is 1/dhkl  
Thus: sin(θ) = (1/dhkl)/(2/λ) or, rearranged: λ = 2 dhkl sin(θ) , and Bragg’s law is satisfied! 



59-553 71 The Ewald Sphere 
This means that when a lattice point intersects the Ewald sphere, the 
reflection corresponding to that family of planes will be observed and the 
diffraction angle will be apparent.  The step-by-step construction and initial 
use of a Ewald sphere is described on the web site 
(http://www.doitpoms.ac.uk/tlplib/reciprocal_lattice/ewald.php). 
 

Starting with an indexed reciprocal lattice, an incident X-ray beam must 
pass through the origin (000) point, corresponding to the direct undiffracted 
beam of X-rays. 



59-553 72 The Ewald Sphere 

The Ewald sphere for this case is defined by making a sphere of radius 1/λ 
having its diameter on the X-ray beam that intersects the origin point.  In 
the diagram on the left, no other RL points are on the surface of the sphere 
so the Bragg condition is not satisfied for any of the families of planes.  To 
observe reflections, the reciprocal lattice must be rotated until an RL point 
contacts the surface of the sphere.  Note: it would be easier to rotate the 
sphere on paper, but in practice, we rotate the crystal lattice and the RL.  



59-553 73 The Ewald Sphere 

When a reciprocal lattice point intersects the Ewald sphere, a reflection will 
occur and can be observed at the 2θ angle of the inscribed triangle.  To be 
able to collect as many different reflections as possible, it is thus necessary 
to be able to rotate the reciprocal lattice to a great extent… 

You can see how this works at: http://www.doitpoms.ac.uk/tlplib/reciprocal_lattice/ewald.php 
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Our need to rotate the crystal in numerous ways to bring all of the families of 
planes into reflection (i.e. to make RL point intersect with the Ewald sphere) 
explains the design of the goniometer portion of the diffractometer.  The 4-
circles of the goniometer allows the crystal to be rotated in virtually any 
direction while remaining in the X-ray beam.  The labels for each of the 
goniometer axes (φ, χ, ω, and θ) are indicated on the diagram below.  Note 
that there are different designs (such as the Kappa geometry) that 
accomplish the same task. 



59-553 75 A Bruker D8 Venture Diffractometer 

X-ray source (tube) 

X-ray preparation 

Detector 

Goniometer 

Low-Temp. 
device 

SAFETY ! 
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If one rotates the Ewald sphere completely about the (000) reciprocal lattice 
point in all three dimensions, the larger sphere (of radius 2/λ) contains all of 
the reflections that it is possible to collect using that wavelength of X-rays.  
This construction is known as the “Limiting sphere” and it defines the 
complete data set.  Any reciprocal lattice points outside of this sphere can 
not be observed.  Note that the shorter the wavelength of the X-radiation, the 
larger the Ewald sphere and the more reflections may be seen (in theory). 

The limiting sphere will hold roughly (4/3πr3/ V*) lattice points.  Since r = 2/λ, this equates to 
around (33.5/ V*λ3) or (33.5 V/λ3) reflections.  For an orthorhombic cell with a volume of 1600Å3, 
this means CuKα can give around 14,700 reflections while MoKα would give 152,000 
reflections. 



59-553 77 The Ewald Sphere 
Remember that the reciprocal lattice can also be defined in terms of the 
wavelength of the X-radiation (by setting K = λ).  In such a construction, the 
Ewald sphere remains the same size, having a radius of 1 (λ · 1/λ = 1), 
independent of the wavelength.  Such pictures show the increased number 
(and density) of reflections for the shorter wavelength radiation.  As noted 
previously, this means that longer wavelength radiation might be necessary 
to resolve individual reflections for crystals with large unit cells and small 
reciprocal unit cells. 

short λ long λ 
To see many of these effects, get XrayView (http://phillips-lab.biochem.wisc.edu/software.html). 
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