The Electronic Structure of Atoms

Classical Hydrogen-like atoms:

Atomic Scale: 10^{-10} m or 1 Å

Proton mass : Electron mass
 1836 : 1

Problems with classical interpretation:
- Should not be stable
 (electron should spiral into nucleus)
- Atomic spectra wrong
 (discrete lines instead of continuum)
Quantum Chemical Interpretation:
e- are best described by wave functions and quantum numbers.

“Quantum” means not continuous.

Quantum numbers for electrons:

\[n = \text{principal quantum number} \]

\[\ell = \text{azimuthal quantum number} \]

(orbital angular momentum)

\[m_\ell = \text{magnetic quantum number} \]

\[m_s = \text{spin magnetic quantum number} \]
Energy levels and n

Spectral transitions predicted by:

$$E = h\nu = R_H \left(\frac{1}{n_l^2} - \frac{1}{n_h^2} \right)$$

where: $n_l < n_h$
Bohr Model of the H atom

\[E_n = -R \left(\frac{Z^2}{n^2} \right) = -R \left(\frac{1}{n^2} \right) \]

\[R = \frac{2\pi^2 \mu e^4}{(4\pi\varepsilon_0)^2 h^2} \]

\[R = 13.6 \text{ eV} \]

\[\mu = \text{reduced mass (nucleus and electron)} \]
\[Z = \text{nuclear charge (1 for H)} \]
\[e = \text{charge of electron} \]
\[\varepsilon_0 = \text{permittivity of a vacuum} \]
\[h = \text{Plank’s constant} \]
\(n = \text{principal} \rightarrow \text{Energy, Size} \rightarrow \text{SHELL} \)

\(n = 1, 2, 3 \ldots \infty \)

\(n = 1 : \text{ground state} \)

\(n = 2 : \text{first excited state} \)

\(n = 3 : \text{second excited state} \)

\[
E_n = -13.6 \left(\frac{1}{n^2} \right)
\]

\[
E_1 = -13.6 \text{ eV}
\]

\[
E_2 = -3.40 \text{ eV}
\]

\[
E_3 = -1.51 \text{ eV}
\]

\[
E_4 = -0.85 \text{ eV}
\]

\[
E_5 = -0.54 \text{ eV}
\]

\[
E_{\infty} = 0 \text{ eV}
\]
\(l = \text{azimuthal}, \) orbital angular momentum

\(\rightarrow \) degeneracy, shape \(\rightarrow \) SUBSHELL

\(l = 0, 1, 2 \ldots n - 1 \quad \text{degeneracy} = 2\ l + 1 \)

<table>
<thead>
<tr>
<th>(l)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4, 5, 6 \ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>s</td>
<td>p</td>
<td>d</td>
<td>f</td>
<td>g, h, i \ldots</td>
</tr>
<tr>
<td>degeneracy</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9, 11, 13 \ldots</td>
</tr>
</tbody>
</table>

s = “sharp”

p = “principal”

d = “diffuse”
$m_\ell = magnetic \rightarrow type, \ "orientation\ in\ space\" \rightarrow ORBITAL$

$m_\ell = 0, \pm 1, \pm 2 \ldots \pm \ell$

of orbitals in a subshell = $2\ell + 1$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>m_ℓ</th>
<th>orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>p_z</td>
</tr>
<tr>
<td></td>
<td>± 1</td>
<td>p_{x}</td>
</tr>
<tr>
<td></td>
<td>± 1</td>
<td>p_{y}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$d_{2z^2-x^2-y^2} = d_{z^2}$</td>
</tr>
<tr>
<td></td>
<td>± 1</td>
<td>d_{xz}</td>
</tr>
<tr>
<td></td>
<td>± 1</td>
<td>d_{yz}</td>
</tr>
<tr>
<td></td>
<td>± 2</td>
<td>$d_{x^2-y^2}$</td>
</tr>
<tr>
<td></td>
<td>± 2</td>
<td>d_{xy}</td>
</tr>
</tbody>
</table>
Wave functions and Orbitals

Ψ = wave function
Ψ² = probability (electron) density
4πr²Ψ² = radial distribution function

\[H\Psi = E\Psi \]

\[\Psi = R_{nl}(r)Y_{lml}(\theta, \phi) \]

\(R_{nl}(r) \) – radial function
\(Y_{lml}(\theta, \phi) \) – angular function

Polar coordinates
Nodes: surfaces where there is 0 probability of finding an electron

Number of nodes = $n - 1$
Number of radial nodes = $n - l - 1$
Number of angular nodes = l
 0 for s orbitals
 1 for p orbitals
 2 for d orbitals (except d_{z^2})

A website demonstrating nodes for 2D wavefunctions can be found at:
http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html
Chem 59-250

s orbitals

p orbitals

(the shading is backwards)
d orbitals
Summary of quantum numbers needed for H:

- $n \rightarrow \textbf{Energy}$ of shell: $E_n = -\mathcal{R} \left(\frac{Z^2}{n^2} \right)$, size: radius($n$) = n^2a_0

- $\ell \rightarrow$ type (degeneracy) of subshell: s(1), p(3), d(5), f(7)

- $m_\ell \rightarrow$ type and orientation of orbitals in a subshell

Energy level diagram:
Many electron atoms

He, $Z = 2$

$$E_n = -\mathcal{R} \left(\frac{Z^2}{n^2} \right)$$

$$E_1 = -\mathcal{R} \left(\frac{2^2}{1^2} \right)$$

Predict: $E_1 = -54.4 \text{ eV}$

Actual: $E_1 = -24.6 \text{ eV}$

Something is wrong with the Bohr Model!
Chem 59-250

\[m_s = \text{spin magnetic} \rightarrow \text{electron spin} \]

\[m_s = \pm \frac{1}{2} \quad (-\frac{1}{2} = \alpha) \quad (+\frac{1}{2} = \beta) \]

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.

Two electrons in the same orbital must have opposite spins.

Electron spin is a purely quantum mechanical concept.
Energy level diagram for He. Electron configuration: 1s²

- **paramagnetic** – one (more) unpaired electrons
- **diamagnetic** – all paired electrons

H

He

paramagnetic – one (more) unpaired electrons
diamagnetic – all paired electrons
Effective Nuclear Charge, Z^*

The presence of other electrons around a nucleus “screens” an electron from the full charge of the nucleus.

We can approximate the energy of the electrons by modifying the Bohr equation to account for the lower “effective” nuclear charge:

$$E_n = -\mathcal{R}\left(\frac{Z^*}{n^2}\right)$$

$$Z^* = Z - \sigma$$

Z^* is the effective nuclear charge
Z is the atomic number
σ is the shielding or screening constant
Helium, \(Z = 2 \)

Predicted: \(E_1 = -54.4 \text{ eV} \)

Actual: \(E_1 = -24.6 \text{ eV} \)

\[
E_n = -\mathcal{R} \left(\frac{Z^*}{n^2} \right)
\]

\[
-24.6 = -13.6 \left(\frac{Z^*}{1^2} \right)
\]

\[
Z^* = \sqrt{\frac{24.6 \times 1^2}{13.6}}
\]

\[
Z^* = 1.34
\]

\[
1.34 = 2 - \sigma
\]

\[
\sigma = 0.66
\]
Lithium, \(Z = 3 \)

Predicted: \(E_2 = -30.6 \text{ eV} \)

Actual: \(E_2 = -5.4 \text{ eV} \)

\[
E_n = -R \left(\frac{Z^*}{n^2} \right)
\]

\[
-5.4 = -13.6 \left(\frac{Z^*}{2^2} \right)
\]

\[
Z^* = \sqrt{\frac{5.4 \times 2^2}{13.6}}
\]

\[
Z^* = 1.26
\]

\[
1.26 = 3 - \sigma
\]

\[
\sigma = 1.74
\]
We want to be able to predict σ and Z^*

Slater’s rules for the prediction of σ for an electron:

1. Group electron configuration as follows:
 $(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)$ etc.

2. Electrons to the right (in higher subshells and shells) of an electron do not shield it.

3. If the electron of interest is an ns or np electron:
 a) each other electron in the same group contributes 0.35 (0.30 for 1s)
 b) each electron in an $n-1$ group contributes 0.85
 c) each electron in an $n-2$ or lower group contributes 1.00

4. If the electron of interest is an nd or nf electron:
 a) each other electron in the same group contributes 0.35
 b) each electron in a lower group (to the left) contributes 1.00
Example with a valence electron on oxygen: O, $Z = 8$
Electron configuration: $1s^2 2s^2 2p^4$

a) $(1s^2)(2s^2 2p^4)$

b) $\sigma = (2 \times 0.85) + (5 \times 0.35) = 3.45$

$Z^* = Z - \sigma$

$Z^* = 8 - 3.45 = 4.55$

This electron is actually held with about 57% of the force that one would expect for a +8 nucleus.
Example with two electrons for nickel: Ni, $Z = 28$
Electron configuration: $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^8$

$$(1s^2) \ (2s^2 \ 2p^6) \ (3s^2 \ 3p^6) \ (3d^8) \ (4s^2)$$

For a 3d electron:
$$\sigma = (18 \times 1.00) + (7 \times 0.35) = 20.45$$
$$Z^* = Z - \sigma \quad Z^* = 28 - 20.45 = 7.55$$

For a 4s electron:
$$\sigma = (10 \times 1.00) + (16 \times 0.85) + (1 \times 0.35) = 23.95$$
$$Z^* = Z - \sigma \quad Z^* = 28 - 23.95 = 4.05$$
The basis of Slater’s rules for σ

s and p orbitals have better “penetration” to the nucleus than d (or f) orbitals for any given value of n

i.e. there is a greater probability of s and p electrons being near the nucleus

This means:

1. ns and np orbitals completely shield nd orbitals

2. $(n-1)s$ and p orbitals don’t completely shield n s and p orbitals
Periodicity of Effective Nuclear Charge

Effective nuclear charge (Clementi) - 1s [nuclear charge units] coded by intensity of red

Z* on valence electrons
The energy of valence electrons in an atom/ion changes with the loss of addition of an electron.

Slater’s rules are only approximate and can give poor predictions. For example:

They ignore the differences in penetration between s and p orbitals. Real s and p orbitals do not have the same energy.

They assume that all electrons in lower shells shield outer electrons equally effectively.

Z^* can be used to estimate ionization energy:

$$\Delta H_{ie} = 13.6 \left(\frac{Z^{*2}}{n^2} \right)$$
Effective nuclear charge can be used to rationalize properties such as the size of atoms and ions.

Be and B$^+$ are *isoelectronic* (1s2 2s2) but very different because of effective nuclear charge.